martes, 8 de febrero de 2011

COMO FUNCIONAN LOS AUDIFONOS

los audifonos con Noise Canceling lo que hacen es que con el microfono detectac los sonidos ambientales y producen un sonido opuesto para que se cancele y no lo escuches y asi puedas escuchar tu musica aun si tener que subirle mucho al volumen pues no te interfiere el ruido que te rodea.
 

COMO FUNCIONAN LOS ALTAVOCES

Un altavoz es un transductor electroacustico igual que el microfono pero que a diferencia de este realiza la operacion inversa, es decir transforma seldas electricas en ondas de presion, y densidad sonora que como sabemos produce el sonido Dentro de un sistema de audio es el unico elemento que no es de naturaleza electronica, con lo que sera el que mas imperfecto de sus componentes y el que mas variacion presente entre versiones bien implementadas y mal implementadas. Asi pues, tener un buen altavoz da mucha calidad a nuestro equipo de sonido. Para situarlo dentro del sistema de audio diremos que ha de estar conectado a una fase previa que amplifique la potencia de audio tal y como los hemos estudiado en el tema 2 de Ingenieria de Ondas 1.

MEMORIA LIFO Y FIFO

Las memorias LIFO y FIFO son memorias especiales del tipo tampón cuyo nombre proviene de la forma de almacenar y extraer la información de su interior.

LIFO (Last in-first out), la última información introducida en la memoria es la primera en extraerse, es lo que se llama una pila o apilamiento.

Estas memorias especiales se crearon para librar a la CPU de gran parte de la labor de supervisión y control al realizar algunas operaciones del tipo de manipulación de datos memorizándolos y extrayéndolos a una secuencia establecida.Las memorias LIFO, no tienen porque ser memorias especiales ajenas a la memoria central del sistema, algunos micro procesadores (UP), suelen incorporar un registro denominado Stock Pointer (puntero de pila), que facilita al UP la posibilidad de construir pila (stock) sobre una zona de memoria RAM, el direccionamiento de la pila lo lleva a cabo el registro Stock Pointer actuando sobre la zona de memoria RAM destinada a tal efecto.


FIFO (First in-firts out), primero en entrar - primero en salir, es decir, es lo que se llama una fila de espera. No son de acceso aleatorio, es escasa su incidencia en sistemas de microordenadores.

FIFO se utiliza en estructuras de datos para implementar colas. La implementación puede efectuarse con ayuda de arrays o vectores, o bien mediante el uso de punteros y asignación dinámica de memoria.

MEMORIA INTERNA

la memoria interna hace referencia a aquella memoria que es fundamental para el funcionamiento de la computadora y que se encuentra alojada en la placa madre. La memoria interna está constituida por la memoria RAM y la memoria ROM.

Suele llamarse "memoria interna" porque, a diferencia de la memoria secundaria o externa, estas memorias no pueden extraerse fácilmente por usuarios no técnicos; además están ubicadas en los componentes más "internos" de una computadora. Además son las únicas memorias que son accedidas de forma directa por la
CPU a través de buses de memoria.

En tanto la
memoria externa sirve para el almacenamiento de datos de forma más permanente, como ser discos duros, discos ópticos, etc.






MEMORIA EXTERNA

 La memoria externa hace referencia a todos los dispositivos y medios de almacenamiento que no son parte de la memoria interna de la computadora (RAM y ROM). Son parte de la memoria externa los disquetes, los discos ópticos, los discos duros, los unidades de cinta, los ZIP, etc. La memoria externa no es fundamental para el funcionamiento de una computadora.

Actualmente la memoria externa más utilizada es el
disco duro, que permite gran capacidad de almacenamiento y rápida recuperación del contenido.

En tanto los disquetes ya casi no tienen uso por su limitada capacidad de almacenamiento, baja velocidad, difícil acceso de la información y alta probabilidad de pérdida de los datos.

Los
discos ópticos reemplazaron a los disquetes. Estos vienen en distintos formatos como ser CD, DVD, Blu-ray y HD-DVD. También son muy utilizadas las memorias flash.

MEMORIA CACHE


una caché es un conjunto de datos duplicados de otros originales, con la propiedad de que los datos originales son costosos de acceder, normalmente en tiempo, respecto a la copia en la caché. Cuando se accede por primera vez a un dato, se hace una copia en el caché; los accesos siguientes se realizan a dicha copia, haciendo que el tiempo de acceso medio al dato sea menor.

MEMORIA FLASH


La memoria flash es una tecnología de almacenamiento —derivada de la memoria EEPROM— que permite la lecto-escritura de múltiples posiciones de memoria en la misma operación. Gracias a ello, la tecnología flash, siempre mediante impulsos eléctricos, permite velocidades de funcionamiento muy superiores frente a la tecnología EEPROM primigenia, que sólo permitía actuar sobre una única celda de memoria en cada operación de programación. Se trata de la tecnología empleada en los dispositivos pendrive.

COMO FUNCIONA EL ESCANER PLANO


Un escáner de computadora (escáner proviene del idioma inglés scanner) es un periférico que se utiliza para convertir, mediante el uso de la luz, imágenes impresas o documentos a formato digital.
Los escáneres pueden tener accesorios como un alimentador de hojas automático o un adaptador para diapositivas y transparencias.
Al obtenerse una imagen digital se puede corregir defectos, recortar un área específica de la imagen o también digitalizar texto mediante técnicas de OCR. Estas funciones las puede llevar a cabo el mismo dispositivo o aplicaciones especiales.
Hoy en día es común incluir en el mismo aparato la impresora y el escáner. Son las llamadas impresoras multifunción.

COMO FUNCIONAN LAS CAMARAS DE VIDEO


La cámara de vídeo es un dispositivo que captura imágenes convirtiéndolas en señales eléctricas, en la mayoría de los casos a señal de vídeo, también conocida como señal de televisión. En otras palabras, una cámara de vídeo es un transductor óptico.

Las primeras cámaras de vídeo, propiamente dichas, utilizaron tubos electrónicos como captadores: un tipo de válvulas termoiónicas que realizaban, mediante el barrido por un haz de electrones del target donde se formaba la imagen procedente de un sistema de lentes, la transducción de la luz (que conformaba la imagen) en señales eléctricas. En la época de los 80 del siglo XX, se desarrollaron transductores de estado solido: los CCDs (Dispositivos de cargas interconectadas). Ellos sustituyeron muy ventajosamente a los tubos electrónicos, propiciando una disminución en el tamaño y el peso de las cámaras de vídeo. Además proporcionaron una mayor calidad y fiabilidad, aunque con una exigencia más elevada en la calidad de las ópticas utilizadas.

COMO FUNCIONAN LOS MICROFONOS

Todos los micrófonos modernos intentan realizar lo mismo que el original, pero haciéndolo de forma electrónica en lugar de mecánica. Un micrófono quiere conseguir ondas de presión variables en el aire y convertirlas en señales eléctricas variables. Hay cinco tecnologías diferentes usadas de forma común para conseguir esta conversión:
  • Micrófonos de carbón – El micrófonos más simple y antiguo que hay usa polvo de carbón. Esta es la tecnología utilizada en los primeros teléfonos, y todavía se usa en algunos hoy en día. El polvo de carbón tiene un metal fino o diafragma de plástico en uno de los lados. Según las ondas de sonido golpean al diafragma, comprimen el polvo de carbón, el cual cambia la resistencia. Moviendo una corriente a través del carbón, la resistencia variable cambia la cantidad de corriente que fluye.
  • Micrófonos dinámicos – Este tipo de micrófono se aprovecha de los efectos electromagnéticos. Cuando un imán se mueva próximo a un cable o bobina,  induce una corriente en el cable. En un micrófono dinámico, el diafragma mueve un imán o una bobina cuando las ondas de sonido golpean el diafragma, y este movimiento crea una pequeña corriente.
  • Los micrófonos de cinta – Una fina cinta es suspendida en un campo magnético. Las ondas de sonido mueven la cinta, la cual cambia la corriente que fluye a través de ella.
  • Micrófono de condensador – Este dispositivo es esencialmente un capacitador, con un plato moviéndose en respuesta de a las ondas de sonido. El movimiento cambia la capacidad del capacitador, y estos cambios son amplificados para crear una señal de medición. Usualmente los micrófonos de condensador necesitan una pequeña batería para proveer de voltaje al  capacitador.
  • Micrófonos de cristal – Cambian sus propiedades eléctricas según cambian su forma. Juntando un cristal al diafragma, el cristal creará una señal cuando la onda de sonido impacte contra el diafragma.
Como puedes ver, casi cualquiera de estas tecnologías han sido preparadas para convertir ondas de sonido en señales eléctricas. Lo que tienen en común es el diafragma, el cual recolecta el sonido y crea un movimiento independientemente de la tecnología usada para crear la señal.

COMO FUNCIONA EL TECLADO

El teclado de la computadora consta de una matriz de contactos, que al presionar una tecla, cierran el circuito. Un microcontrolador detecta la presión de la tecla, y genera un código. Al soltarse la tecla, se genera otro código. De esta manera el chip localizado en la placa del teclado puede saber cuándo fue presionada y cuándo fue soltada, y actuar en consecuencia.Los códigos generador son llamados Codigos de barrido (Scan code, en inglés).
Una vez detectada la presión de la tecla, los códigos de barrido son generados, y enviados de forma serial a través del cable y con el conector del teclado, llegan a la placa madre de la PC. Allí, el código es recibido por el microcontrolador conocido como BIOS DE TECLADO. Este chip compara el código de barrido con el correspondiente a la Tabla de caracteres. Genera una interrupción por hardware, y envía los datos al procesador.

COMO FUNCIONA EL MOUSE

Al desplazar el ratón sobre una superficie, la bola o sensor mueve los rodillos que están en contacto con ella. Un rodillo se encarga de los movimientos laterales y otro de los verticales. Los rodillos están conectados a unas ruedas, llamadas codificadores, que están situadas enfrente de unos pequeños emisores de luz. Estas ruedas poseen unas ranuras que permiten el paso de la luz hasta unos dispositivos fotosensibles, que detectan los destellos y los traducen en información codificada que el ordenador es capaz de interpretar. Por otra parte, al pulsar algún botón del ratón, se genera otro tipo de señal, que el ordenador distinguirá de la anterior y que, dependiendo del programa que se esté utilizando, permitirá realizar distintas operaciones.


RANURAS PCI



En el año 1990 se produce uno de los avances mayores en el desarrollo de los ordenadores, con la salida del bus PCI (Peripheral Component Interconnect).

Se trata de un tipo de ranura que llega hasta nuestros días (aunque hay una serie de versiones), con unas especificaciones definidas, un tamaño menor que las ranuras EISA (las ranuras PCI tienen una longitud de 8.5cm, igual que las ISA de 8bits), con unos contactos bastante más finos que éstas, pero con un número superior de contactos (98 (49 x cara) + 22 (11 x cara), lo que da un total de 120 contactos).

Con el bus PCI por primera vez se acuerda también estandarizar el tamaño de las tarjetas de expansión (aunque este tema ha sufrido varios cambios con el tiempo y las necesidades). El tamaño inicial acordado es de un alto de 107mm (incluida la chapita de fijación, o backplate), por un largo de 312mm. En cuanto al backplate, que se coloca al lado contrario que en las tarjetas EISA y anteriores para evitar confusiones, también hay una medida estándar (los ya nombrados 107mm), aunque hay una medida denominada de media altura, pensada para los equipos extraplanos.

Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:

- PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
- PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
- PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
- PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s
- PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
- PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.

PUERTO PARALELO

Un puerto paralelo es una interfaz entre una computadora y un periférico, cuya principal característica es que los bits de datos viajan juntos, enviando un paquete de byte a la vez. Es decir, se implementa un cable o una vía física para cada bit de datos formando un bus. Mediante el puerto paralelo podemos controlar también periféricos como focos, motores entre otros dispositivos, adecuados para automatización.
El cable paralelo es el conector físico entre el puerto paralelo y el dispositivo periférico. En un puerto paralelo habrá una serie de bits de control en vías aparte que irán en ambos sentidos por caminos distintos.
En contraposición al puerto paralelo está el puerto serie, que envía los datos bit a bit por el mismo hilo.

PUERTO USB

El Universal Serial Bus (bus universal en serie) o Conductor Universal en Serie (CUS), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a un ordenador. Fue creado en 1996 por siete empresas (que actualmente forman el consejo directivo): IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC.[1]
El diseño del USB tenía en mente eliminar la necesidad de adquirir tarjetas separadas para poner en los puertos bus ISA o PCI, y mejorar las capacidades plug-and-play permitiendo a esos dispositivos ser conectados o desconectados al sistema sin necesidad de reiniciar. Sin embargo, en aplicaciones donde se necesita ancho de banda para grandes transferencias de datos, o si se necesita una latencia baja, los buses PCI o PCIe salen ganando. Igualmente sucede si la aplicación requiere de robustez industrial. A favor del bus USB, cabe decir que cuando se conecta un nuevo dispositivo, el servidor lo enumera y agrega el software necesario para que pueda funcionar (esto dependerá ciertamente del sistema operativo que se esté usando).

RANURAS PRESENTES EN LA PLACA BASE

CHIPSET

Circuito integrado auxiliar o chipset es el conjunto de circuitos integrados diseñados con base a la arquitectura de un procesador (en algunos casos diseñados como parte integral de esa arquitectura), permitiendo que ese tipo de procesadores funcionen en una placa base. Sirven de puente de comunicación con el resto de componentes de la placa, como son la memoria, las tarjetas de expansión, los puertos USB, ratón, teclado, etc.
Las placas base modernas suelen incluir dos integrados, denominados Norte y Sur, y suelen ser los circuitos integrados más grandes después del microprocesador.
El chipset determina muchas de las características de una placa base y por lo general la referencia de la misma está relacionada con la del chipset.
A diferencia del microcontrolador, el procesador no tiene mayor funcionalidad sin el soporte de un chipset: la importancia del mismo ha sido relegada a un segundo plano por las estrategias de marketing.

SOCKET

Para que dos programas puedan comunicarse entre sí es necesario que se cumplan ciertos requisitos:
  • Que un programa sea capaz de localizar al otro.
  • Que ambos programas sean capaces de intercambiarse cualquier secuencia de octetos, es decir, datos relevantes a su finalidad.
Para ello son necesarios los tres recursos que originan el concepto de socket:
  • Un protocolo de comunicaciones, que permite el intercambio de octetos.
  • Una dirección del Protocolo de Red (Dirección IP, si se utiliza el Protocolo TCP/IP), que identifica una computadora.
  • Un número de puerto, que identifica a un programa dentro de una computadora.
Los sockets permiten implementar una arquitectura cliente-servidor. La comunicación ha de ser iniciada por uno de los programas que se denomina programa cliente. El segundo programa espera a que otro inicie la comunicación, por este motivo se denomina programa servidor.
Un socket es un fichero existente en la máquina cliente y en la máquina servidora, que sirve en última instancia para que el programa servidor y el cliente lean y escriban la información. Esta información será la transmitida por las diferentes capas de red.

Propiedades inherentes a los sockets

Las propiedades de un socket dependen de las características del protocolo en el que se implementan. El protocolo más utilizado es Transmission Control Protocol, aunque también es posible utilizar UDP o IPX.
Cuando se implementan con el protocolo TCP, los sockets tienen las siguientes propiedades:
  • Orientado a conexión.
  • Se garantiza la transmisión de todos los octetos sin errores ni omisiones.
  • Se garantiza que todo octeto llegará a su destino en el mismo orden en que se ha transmitido.
Estas propiedades son muy importantes para garantizar la corrección de los programas que tratan la información.
El protocolo UDP es un protocolo no orientado a la conexión. Sólo se garantiza que si un mensaje llega, llegue bien. En ningún caso se garantiza que llegue o que lleguen todos los mensajes en el mismo orden que se mandaron. Esto lo hace adecuado para el envío de mensajes frecuentes pero no demasiado importantes, como por ejemplo, mensajes para los refrescos (actualizaciones) de un gráfico..

FORMATOS O FACTORES DE FORMA

Un ordenador personal se compone de diversas piezas independientes entre sí. Por ejemplo, la placa base, la carcasa, la fuente de alimentación, etc. Cada uno de estos componentes es proporcionado por un fabricante independiente. Si no existiera un acuerdo mínimo entre estos fabricantes, no sería posible la interoperabilidad de estos componentes. Por ejemplo, una placa base podría no entrar físicamente en la carcasa, o el enchufe de una fuente de alimentación podría ser incompatible con el correspondiente conector de la placa base.

Para qué sirve

Un form factor define características muy básicas de una placa base para que pueda integrarse en el resto de la computadora, al menos, física y eléctricamente. Naturalmente, éste no es suficiente para garantizar la interconexión de dos componentes, pero es el mínimo necesario. Las características definidas en un form factor son:
  • La forma de la placa base: cuadrada o rectangular.
  • Sus dimensiones físicas exactas: ancho y largo.
  • La posición de los anclajes. Es decir, las coordenadas donde se sitúan los tornillos.
  • Las áreas donde se sitúan ciertos componentes. En concreto, las ranuras de expansión y los conectores de la parte trasera (para teclado, ratón, USB, etc.)
  • La forma física del conector de la fuente de alimentación.
  • Las conexiones eléctricas de la fuente de alimentación, es decir, cuantos cables requiere la placa base de la fuente de alimentación, sus voltajes y su función.

TIPOS DE PLACAS BASE

Los tipos más comunes de placas base son:
  • Baby AT: son las que han reinado durante varios años, son típicas de los primeros ordenadores clónicos y han perdurado hasta la aparición de los Pentium, pues tenían una gran maraña de cables y carecían de una ventilación idónea, y dejaban entrever su carencia a la hora de conectar otros periféricos. Son reconocibles por el conector del teclado, clavija de formato DIN ancho.
  • ATX: Son las placas estándar del mercado actual, tienen una mejor ventilación, menos cables, el teclado y el ratón son de clavija mini-DIN y lleva más conectores, sobre todo los modernos USB y FireWire (cable de fuego).
  • LPX: Similares a las Baby-AT, pero los slots de expansión no se encuentran sobre la placa base, sino en un conector especial en el que están pinchadas, la riser card. Las tarjetas van paralelas a la placa bases y su único inconveniente es que la riser card no suele tener más de dos o tres slots de expansión.
  • Diseño propios de las marcas (IBM, Compaq, Hewlett-Packard), que éstos las adaptan a sus necesidades, con el consiguiente inconveniente a la hora de la ampliación del ordenador.


PLACA BASE CON SUS PARTES

PLACA BASE

La placa base, también conocida como placa madre o tarjeta madre (del inglés motherboard o mainboard) es una placa de circuito impreso a la que se conectan los componentes que constituyen la computadora u ordenador. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el microprocesador, la memoria de acceso aleatorio (RAM), las ranuras de expansión y otros dispositivos.
Va instalada dentro de una caja o gabinete que por lo general está hecha de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes dentro de la caja.
La placa base, además, incluye un firmware llamado BIOS, que le permite realizar las funcionalidades básicas, como pruebas de los dispositivos, vídeo y manejo del teclado, reconocimiento de dispositivos y carga del sistema operativo.

COMO FUNCIONA EL MONITOR TRC

Este proceso es imprescindible, y debe repetirse varias veces por segundo (como dato práctico, las frecuencias de refresco estándares son 56, 60, 65, 70, 72, 75, 80, 85, 90, 95, 100, 110 y 120 Hz). En primer lugar, se comienza en el píxel situado en la parte izquierda superior de la pantalla. Entonces, se barren todos los píxeles de la línea superior en sentido horizontal, de izquierda a derecha. A continuación, el haz se desactiva, y el cañón se desplaza hacia el primer píxel de la línea inmediatamente inferior (como si de un “retorno de carro y avance de línea” se tratara). El proceso se repite hasta cubrir toda la pantalla


Finalmente, el haz se vuelve a desactivar, y el TRC vuelve a enfocar al píxel original, listo para “dibujar” una nueva pantalla. Este proceso se denomina “barrido progresivo”.


Existe otro tipo de barrido, denominado “entrelazado”, que se emplea en el mundo de la televisión, y que también se utilizaba en los primeros monitores, para aprovechar los desarrollos existentes. Mediante esta técnica, en cada refresco sólo se rellena la mitad de las líneas de la pantalla. En un primer barrido, se rellenan las líneas impares. En el barrido siguiente, se rellenan las pares, completando un cuadro. El barrido entrelazado tiene una clara motivación: por diversas causas (siempre dentro del mundo de la TV), no es posible ofrecer frecuencias de refresco suficientemente altas. Usando barrido progresivo con frecuencias de refresco insuficientes, se produce una sensación de parpadeo que, a su vez, se convierte en fatiga visual tras varias horas de trabajo. Se podría pensar en aumentar la persistencia de la pantalla, pero esto produciría estelas, especialmente ante movimientos rápidos.

COMO FUNCIONA EL MONITOR CRT

Un monitor CRT contiene millones de pequeños puntos de fósforo rojos, verdes y azules que brillan cuando son alcanzados por un rayo de electrones que viajan por la pantalla para crear una imagen visible. Los términos ánodo y cátodo son usados en electrónica como sinónimos de terminales positivos y negativos. Por ejemplo, te podrías referir al terminal positivo de una batería como ánodo y el terminal negativo como cátodo. En un tubo de rayos catódicos, el “cátodo” es un filamento caliente. Este filamento caliente esta dentro de un vacío creado dentro de un tubo de vidrio. El “rayo” es un flujo de electrones generados por una fuente que sale de forma natural del cátodo en el vacío.

COMO FUNCIONA EL MONITOR LCD

La tecnología LCD utiliza moléculas de cristal líquido colocadas entre diferentes capas que los polarizan y los rotan según si se quiere mostrar un color u otro. Su principal ventaja, además de su reducido tamano, es el ahorro de energía.
Cuando las moléculas en la red cristalina giran, cambian el ángulo de polarización de la luz que pasa por estas, de manera que parte de la misma es reflejada y parte es transmitida. Lo que se traduce en una reducción de la intensidad de la luz que traspasa el cristal. Los LCDs necesitan una fuente externa de luz, ya que los mismos no son capaces de emitirla.
En las pantallas de computadora o de mayor tamano se usan LCDs de matriz pasiva y de matriz activa. En el primer caso, se hace pasar corriente eléctrica a través de una malla de conductores arriba y debajo de la placa de cristal líquido. De esta forma, en el punto donde se encuentran las cargas eléctricas, el pequeno cristal líquido se “destuerce”, permitiendo el paso de la luz que viene del fondo. Las pantallas LCD de matriz activa poseen transistores y capacitores para cada punto o píxel, lo que facilita un mayor control de qué cristal líquido se activa y cuál no, además de mayor precisión en el grado de polarización de cada cristal, llegando hasta 256 grados de brillantez por píxel.

COMO FUNCIONAN LAS IMPRESORAS DE INYECCION DE TINTA

Las características principales de una impresora de inyección de tinta son la velocidad, que se mide en páginas por minuto (ppm) y que suele ser distinta dependiendo de si se imprime en color o en monocromo, y la resolución máxima, que se mide en puntos por pulgada (ppp). En ambos valores, cuanto mayores

Ventajas y desventajas
  • La principal ventaja es que tienen un costo inicial muy inferior al de otras impresoras.
  • La nuevas impresoras cuentan con una velocidad de impresión igual o superior a las impresoras láser de mediano tamaño.
  • La instalación de un sistema de alimentación continuo de tinta baja los costos de impresión a menos de 1 centavo de dólar por página en color.
  • Otra ventaja adicional es su reducido tamaño frente a las impresoras láser en color, debido a que estas últimas tienen que almacenar cuatro toners (cian, amarillo, magenta y negro) de grandes dimensiones en su interior.
  • El costo por copia respecto a otras impresoras es mucho mayor (con cartuchos originales), debido a que el cartucho de tinta se consume con rapidez y tiene un costo elevado.
  • Otra importante desventaja que tienen es la relativa rapidez con que quedan inservibles los cabezales de impresión si no se usan durante algunos meses. Esto ha hecho que muchos usuarios con necesidades intermitentes de impresión se hayan visto obligados a adquirir una impresora láser en color, a pesar de que su precio no justifica su adquisición para la impresión de un número reducido de copias. Algunas Marcas (Canon, HP, Lexmark, otras) poseen los cabezales de impresión en los cartuchos lo cual permite resolver el problema con solo cambiar el cartucho.

COMO FUNCIONAN LAS IMPRESORAS DE MATRIZ DE PUNTO

Las impresoras de matriz de puntos fueron, en su momento, el tipo de impresora más popular del mercado debido a que eran muy pequeñas, económicas de adquirir y operan, y bastante confiables. Sin embargo, al reducirse de manera constante el precio de las impresoras láser, y al aparecer en el mercado las impresoras de inyección de tinta que ofrecían una calidad de salida superior y prácticamente al mismo precio, el mercado de las impresoras de matriz de puntos se redujo de manera drástica. Aunque siguen realizando muy bien ciertas tareas, las impresoras de matriz de puntos son, regularmente, demasiado ruidosas, ofrecen una calidad de impresión mediocre y tienen un manejo de papel deficiente para una sola hoja de papel.

COMO FUNCIONAN LAS IMPRESORAS LASER

En la actualidad, cualquier usuario de PC trabaja habitualmente en formato electrónico. Se redactan documentos mediante herramientas de proceso de texto, se crean presentaciones que se pueden mostrar directamente en la pantalla del PC, se escriben “cartas electrónicas” mediante e-mail, etc. Sin duda, el uso innecesario del papel se ha reducido considerablemente, lo que conlleva muchos beneficios (por ejemplo, el consiguiente impacto positivo en el ámbito ecológico o la reducción de costos debido al menor gasto de papel).

http://www.gadgetoweb.com/%C2%BFcomo-funcionan-las-impresoras-laser/

lunes, 7 de febrero de 2011

DVD

El DVD, devedé o deuvedé (pronunciado debedé o deubedé, es incorrecta la pronunciación dibidí ) es un dispositivo de almacenamiento óptico cuyo estándar surgió en 1995. Sus siglas corresponden con Digital Versatile Disc en inglés (Disco Versátil Digital traducido al español). En sus inicios, la "V" intermedia hacía referencia a "Video" (Digital videodisk), debido a su desarrollo como reemplazo del formato VHS para la distribución de video a los hogares.
Unidad de DVD: el nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y borrar las veces que se quiera). También difieren en la capacidad de almacenamiento de cada uno de los tipos.

CD

El disco compacto (conocido popularmente como CD por las siglas en inglés de Compact Disc) es un soporte digital óptico utilizado para almacenar cualquier tipo de información (audio, imágenes, vídeo, documentos y otros datos). En español ya se puede escribir cedé (como se pronuncia) porque ha sido aceptada y lexicalizada por el uso; en gran parte de Latinoamérica se pronuncia [sidí], como en inglés, pero la Asociación de Academias de la Lengua Española desaconseja —en su Diccionario panhispánico de dudas— esa pronunciación. También se acepta cederrón (de CD-ROM). Hoy en día, sigue siendo el medio físico preferido para la distribución de audio.


DISCO DURO

En informática, un disco duro o disco rígido (en inglés Hard Disk Drive, HDD) es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.
El primer disco duro fue inventado por IBM en 1956. A lo largo de los años, los discos duros han disminuido su precio al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de almacenamiento secundario para PC desde su aparición en los años 60.[1] Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.[1]
Los tamaños también han variado mucho, desde los primeros discos IBM hasta los formatos estandarizados actualmente: 3,5" los modelos para PCs y servidores, 2,5" los modelos para dispositivos portátiles. Todos se comunican con la computadora a través del controlador de disco, empleando una interfaz estandarizado. Los más comunes hoy día son IDE (también llamado ATA o PATA), SCSI (generalmente usado en servidores y estaciones de trabajo), Serial ATA y FC (empleado exclusivamente en servidores).
Para poder utilizar un disco duro, un sistema operativo debe aplicar un formato de bajo nivel que defina una o más particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del formato empleado. Además, los fabricantes de discos duros, SSD y tarjetas flash miden la capacidad de los mismos usando prefijos SI, que emplean múltiplos de potencias de 1000 según la normativa IEC, en lugar de los prefijos binarios clásicos de la IEEE, que emplean múltiplos de potencias de 1024, y son los usados mayoritariamente por los sistemas operativos. Esto provoca que en algunos sistemas operativos sea representado como múltiplos 1024 o como 1000, y por tanto existan ligeros errores, por ejemplo un Disco duro de 500 GB, en algunos sistemas operativos sea representado como 465 GiB (Según la IEC Gibibyte, o Gigabyte binario, que son 1024 Mebibytes) y en otros como 465 GB.